

Multistate model for pharmacometric analyses of overall survival in anticancer treatments

Sreenath M. Krishnan, Lena E. Friberg and Mats O. Karlsson Pharmacometrics Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden.

Background

- The primary endpoint in late-stage oncology trials: Overall survival (OS)
 - Defined as the time from randomization to death from any cause
 - Requires long follow-up (~3-5years)
 - The results might be confounded by second line treatments
- The primary endpoint in early clinical development: Progression free survival (PFS)
 - Defined as the time from randomization to disease progression/death
 - PFS improvements do not always result in corresponding improvements in OS

Survival analysis

Issues in handling time-dependent predictors

• Survival analysis

Time to event model using a survival function

- Hazard of death = $h_0(t) \cdot e^{(\beta 1 \cdot predictor 1)}$
- Ignoring immortal time bias can be a major issue
 - Example: "depth of tumor response" as a predictor of OS.

Survival analysis

Issues in handling time-dependent predictors

• Survival analysis

Time to event model using a survival function

- Hazard of death = $h_0(t) \cdot e^{(\beta 1 \cdot predictor 1)}$
- Ignoring immortal time bias can be a major issue
 - Example: "depth of tumor response" as a predictor of OS.

Survival analysis

Issues in handling time-dependent predictors

• Survival analysis

Time to event model using a survival function

- Hazard of death = $h_0(t) \cdot e^{(\beta 1 \cdot predictor 1)}$
- Ignoring immortal time bias can be a major issue
 - Example: "depth of tumor response" as a predictor of OS.

Patient 1 :

Depth of tumor response : 62% Survival time : 120 weeks Time to depth of tumor response: 48 weeks

Patient 2 :

Depth of tumor response : **20%** Survival time : **18 weeks** Time to depth of tumor response: 18 weeks

Intermediate events

• Overall objective

To explore the potential of a multistate model, including its ability to predict OS using time-varying predictors while addressing the immortal time bias.

- Specific objectives
 - To develop a multistate model to characterize the transition probabilities between states
 - To investigate dynamic predictors on the transition hazards

Data

Simulation of data

- Longitudinal tumor size data (sum of longest diameters, SLD) and survival times for 1,000 subjects were simulated
 - Tumor size-OS joint model^{1,2} for docetaxel treatment in HER2negative metastatic breast cancer patients³
 - Tumor sizes at zero, and every 9 weeks during the first 36 weeks and thereafter every 12 weeks until disease progression (20% increase in SLD from tumor nadir⁴)
 - Simulation duration: 3 years

Data

Definition of different states

State	Name	Description
1	Stable disease	Initial state for all subjects
2	Response	≥ 30% decrease in SLD from baseline SLD*
3	Progression	≥ 20% increase in SLD from tumor nadir*
4	Second-line	50% of the patients who had disease progression were switched to second line treatment within 6 [0.5-12] weeks after progression
5	Death	Death event

*Response evaluation criteria in solid tumours (RECIST v1.1) Eisenhauer et al., Eur J Cancer. (2009)

Multistate model framework

Predictors of transition hazards

Baseline covariates	Time-varying predictors*	Investigated on
Tumor burden (SLD ₀ , mm) Age (years)	SLD change from baseline (%) SLD change between the two previous measurements (%) SLD change from tumor nadir (%)	$egin{array}{c} \lambda_{12} \ \lambda_{13} \ \lambda_{24} \ \lambda_{35} \ \lambda_{45} \end{array}$

* The time-varying predictors were investigated in a way that the future tumor observations would not influence the present predictions of transition rates.

For example, SLD data until week 18 was used in the prediction of transition hazards at week 27.

Structural model – combination of hazard functions

Transition	Hazard function	Interpretation	
Stable to response (λ_{12})	Weibull	Hazard diminished with time	
Stable to progression (λ_{13})	Weibull	Hazard increased with time	
Progression to death (λ_{35})		Hazard decreased with time	
Second line to death (λ_{45})	vveibuli	Not statistically different from λ_{35}	

Structural model – combination of hazard functions

Transition	Hazard function	Interpretation	
Stable to response (λ_{12})	Weibull	Hazard diminished with time	
Stable to progression (λ_{13})	Weibull	Hazard increased with time	
Progression to death (λ_{35})	M/aibull	Hazard decreased with time	
Second line to death (λ_{45})	vveibuli	Not statistically different from λ_{35}	
Response to progression(λ_{23})	Exponential	Constant hazard	
Progression to second line* (λ_{34})	Exponential	Constant hazard	

*A mixture model with two sub-populations, where pop-1 received second-line treatment and pop-2 did not receive second-line treatment. 14

Structural model – combination of hazard functions

Transition	Hazard function	Interpretation	
Stable to response (λ_{12})	Weibull	Hazard diminished with time	
Stable to progression (λ_{13})	Weibull	Hazard increased with time	
Progression to death (λ_{35})	Maibull	Hazard decreased with time	
Second line to death (λ_{45})	vveibuli	Not statistically different from λ_{35}	
Response to progression(λ_{23})	Exponential	Constant hazard	
Progression to second line* (λ_{34})	Exponential	Constant hazard	
Stable to death (λ_{15})	Comporte Makabam#	Age specific hazard	
Response to death (λ_{25})	Gompertz-wakenam"		

*A mixture model with two sub-populations, where pop-1 received second-line treatment and pop-2 did not receive second-line treatment.

Predictors of transition hazard

Transition	Predictor	Hazard ratio	
Stable to response (λ_{12})	Baseline tumor size (SLD ₀)	Hazard ratio = 1.10/every 10 mm increase from median SLD ₀	2.5 Ote 2.0 1.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.0
Response to progression (λ₂₃)	Change in SLD between two previous measurements (dSLD)	Hazard ratio = 1.12/10% increase in SLD	OID A DIEZE H O_ O
Progression to death (λ_{35})	Baseline tumor size SLD change from baseline at progression (rSLD)	Hazard ratio = 1.08/every 10 mm increase from median SLD ₀ Hazard ratio = 1.12/10% increase in SLD from baseline	Gite H of the second se

Visual predictive check

Clinical endpoints

Docetaxel response

95% confidence interval

Conclusion

- This novel approach for analyzing oncology data successfully characterized the intermediate events prior to survival time and jointly described the OS event.
- The predictors were evaluated in a prospective manner so not to cause immortal time bias.
- This multistate model framework allows for
 - extension (pseudo-progression, dropout, etc.)
 - simplification (absence of second line treatment)
- The investigation of predictors and the characterization of time to develop response, duration of response, and the overall outcome events PFS and OS can be performed in a single multistate modeling exercise.

Further reading

- Sreenath M. Krishnan, Lena E. Friberg, René Bruno, Ulrich Beyer, Jin Y. Jin, and Mats O. Karlsson. 2021. "Multistate Model for Pharmacometric Analyses of Overall Survival in HER2-Negative Breast Cancer Patients Treated with Docetaxel." CPT: Pharmacometrics & Systems Pharmacology. <u>https://doi.org/10.1002/PSP4.12693</u>.
- Ulrich Beyer, David Dejardin, Matthias Meller, Kaspar Rufibach, and Hans Ulrich Burger. 2020. "A Multistate Model for Early Decision-Making in Oncology." Biometrical Journal 62 (3): 550–67. <u>https://doi.org/10.1002/bimj.201800250</u>

Thank you for your attention